Wire Forming Process

Oct 1, 2022 | Blog, Wire Fabrication

Four Basic Steps

There are four basic steps to the wire forming process that have to be considered when making the decision for having a part or component wire formed. They include the selection of the proper type of wire for the application, straightening the wire before it is processed, the application of force to create the design configuration, and the need for secondary processing.

Wire Form Process

Wire Selection

The gauge, diameter, and type of wire for the wire forming process is determined by the initial CAD design. Steel and stainless steel are the most common types of wire for applications that require resilient and long lasting components. Lightweight wires, such as aluminum and copper, are used for less demanding conditions. Wire can be made of low, medium, and high carbon steel, as well as stainless steel, aluminum, copper, brass, and various alloyed metals.

Wire Straightening

Wire is stored in coils and has to be straightened before processing. During the straightening, stress deformities accumulated in storage have to be removed. Machine rolling is used to straighten wire. Uncontrolled irregularities can lead to a poor wire form.

Applying Force

Wire forming requires the application of force to change the contour and shape of the wire into the desired form. The shaping process is designed to produce a wide array of shapes and configurations. Force is applied by hand or various automated equipment with dies and cutting tools. CNC and four slide machines are used for high volume production.

Finishing

The need for finishing depends on the type of product. Wire forming may not require finishing depending on the design of the product. There are cases where cuts, grooves, heading, coining, swaging, and other after production adjustments have to be made. The most important function is ensuring that burrs and sharp edges are adjusted and removed.

Contact Acme Wire Products today to answer your questions and provide you with a custom quote today.